Automated Classification of L/R Hand Movement EEG Signals using Advanced Feature Extraction and Machine Learning

نویسندگان

  • Mohammad H. Alomari
  • Aya Samaha
  • Khaled AlKamha
چکیده

In this paper, we propose an automated computer platform for the purpose of classifying Electroencephalography (EEG) signals associated with left and right hand movements using a hybrid system that uses advanced feature extraction techniques and machine learning algorithms. It is known that EEG represents the brain activity by the electrical voltage fluctuations along the scalp, and Brain-Computer Interface (BCI) is a device that enables the use of the brain’s neural activity to communicate with others or to control machines, artificial limbs, or robots without direct physical movements. In our research work, we aspired to find the best feature extraction method that enables the differentiation between left and right executed fist movements through various classification algorithms. The EEG dataset used in this research was created and contributed to PhysioNet by the developers of the BCI2000 instrumentation system. Data was preprocessed using the EEGLAB MATLAB toolbox and artifacts removal was done using AAR. Data was epoched on the basis of Event-Related (De) Synchronization (ERD/ERS) and movement-related cortical potentials (MRCP) features. Mu/beta rhythms were isolated for the ERD/ERS analysis and delta rhythms were isolated for the MRCP analysis. The Independent Component Analysis (ICA) spatial filter was applied on related channels for noise reduction and isolation of both artifactually and neutrally generated EEG sources. The final feature vector included the ERD, ERS, and MRCP features in addition to the mean, power and energy of the activations of the resulting Independent Components (ICs) of the epoched feature datasets. The datasets were inputted into two machinelearning algorithms: Neural Networks (NNs) and Support Vector Machines (SVMs). Intensive experiments were carried out and optimum classification performances of 89.8 and 97.1 were obtained using NN and SVM, respectively. This research shows that this method of feature extraction holds some promise for the classification of various pairs of motor movements, which can be used in a BCI context to mentally control a computer or machine. Keywords—EEG; BCI; ICA; MRCP; ERD/ERS; machine learning; NN; SVM

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Classification of Four Class Motor Imagery and Hand Movements for Brain Computer Interface

In this paper, four class motor imagery and hand movements classification has been done for brain computer interface. In this project, we proposed an automated computer platform for the purpose of classifying Electroencephalography (EEG) signals associated with left and right hand movements using a ENOBIO DEVICE.EEG signals were acquired on the Enobio device, with all 8 channels (F3, F4, FZ, P3...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1312.2877  شماره 

صفحات  -

تاریخ انتشار 2013